Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations

نویسندگان

  • Afshin Hassani-Mehraban
  • Sjoerd Creutzburg
  • Luc van Heereveld
  • Richard Kormelink
چکیده

BACKGROUND & METHODS Within the last decade Virus-Like Particles (VLPs) have increasingly received attention from scientists for their use as a carrier of (peptide) molecules or as scaffold to present epitopes for use in subunit vaccines. To test the feasibility of Cowpea chlorotic mottle virus (CCMV) particles as a scaffold for epitope presentation and identify sites for epitope fusion or insertion that would not interfere with virus-like-particle formation, chimeric CCMV coat protein (CP) gene constructs were engineered, followed by expression in E. coli and assessment of VLP formation. Various constructs were made encoding a 6x-His-tag, or selected epitopes from Influenza A virus [IAV] (M2e, HA) or Foot and Mouth Disease Virus [FMDV] (VP1 and 2C). The epitopes were either inserted 1) in predicted exposed loop structures of the CCMV CP protein, 2) fused to the amino- (N) or carboxyl-terminal (C) ends, or 3) to a N-terminal 24 amino acid (aa) deletion mutant (N∆24-CP) of the CP protein. RESULTS High levels of insoluble protein expression, relative to proteins from the entire cell lysate, were obtained for CCMV CP and all chimeric derivatives. A straightforward protocol was used that, without the use of purification columns, successfully enabled CCMV CP protein solubilization, reassembly and subsequent collection of CCMV CP VLPs. While insertions of His-tag or M2e (7-23 aa) into the predicted external loop structures did abolish VLP formation, high yields of VLPs were obtained with all fusions of His-tag or various epitopes (13- 27 aa) from IAV and FMDV at the N- or C-terminal ends of CCMV CP or N∆24-CP. VLPs derived from CCMV CP still encapsulated RNA, while those from CCMV CP-chimera containing a negatively charged N-terminal domain had lost this ability. The usefulness and rapid ease of exploitation of CCMV VLPs for the production of potential subunit vaccines was demonstrated with the synthesis of chimeric CCMV VLPs containing selected sequences from the GN and GC glycoproteins of the recently emerged Schmallenberg orthobunyavirus at both termini of the CP protein. CONCLUSIONS CCMV VLPs can be successfully exploited as scaffold for epitope fusions up to 31 aa at the N- and C-terminus, and at a N-terminal 24 amino acid (aa) deletion mutant (N∆24-CP) of the CP protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assembling Enzymatic Cascade Pathways inside Virus-Based Nanocages Using Dual-Tasking Nucleic Acid Tags

The packaging of proteins into discrete compartments is an essential feature for cellular efficiency. Inspired by Nature, we harness virus-like assemblies as artificial nanocompartments for enzyme-catalyzed cascade reactions. Using the negative charges of nucleic acid tags, we develop a versatile strategy to promote an efficient noncovalent co-encapsulation of enzymes within a single protein ca...

متن کامل

Stabilization of a Virus-Like Particle and Its Application as a Nanoreactor at Physiological Conditions

Virus-like particles are very interesting tools for application in bionanotechnology, due to their monodisperse features and biocompatibility. In particular, the cowpea chlorotic mottle virus (CCMV) capsid has been studied extensively as it can be assembled and disassembled reversibly, facilitating cargo encapsulation. CCMV is, however, only stable at physiological conditions when its endogenou...

متن کامل

Versatile post-functionalization of the external shell of cowpea chlorotic mottle virus by using click chemistry.

We present the modification of the outer protein shell of cowpea chlorotic mottle virus (CCMV) with linear and strained alkyne groups. These functionalized protein capsids constitute valuable platforms for post-functionalization via click chemistry. After modification, the integrity of the capsid and the reversible disassembly behavior are preserved.

متن کامل

Improved cell disruption of Pichia pastoris utilizing aminopropyl magnesium phyllosilicate (AMP) clay

An efficient method for Pichia cell disruption that employs an aminopropyl magnesium phyllosilicate (AMP) clay-assisted glass beads mill is presented. AMP clay is functionalized nanocomposite resembling the talc parent structure Si8Mg6O20(OH)4 that has been proven to permeate the bacterial membrane and cause cell lysis. The recombinant capsid protein of cowpea chlorotic mottle virus (CCMV) expr...

متن کامل

Synergistic effects of mutations and nanoparticle templating in the self-assembly of cowpea chlorotic mottle virus capsids.

A study of the in vitro nanoparticle-templated assembly of a mutant of cowpea chlorotic mottle virus lacking most of the N-terminal domain (residues 4-37), NDelta34, is presented. Mutant empty proteins assemble into empty capsids with a much broader distribution of sizes than the wild-type virus. This increased flexibility in the assembly outcomes is known to be detrimental for the assembly pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015